شرکت در آزمون آنلاین هندسه 2 - فصل دوم : تبدیل های هندسی | آزمون شماره 53
1-
دو دایره متقاطع به شعاعهای ۵ واحد تحت یک بازتاب روی هم تصویر میشوند. اگر طول وتر مشترک دو دایره ۶ واخد باشد فاصله مرکز هر کدام از ددایرهها از محور بازتاب کدام است؟
2- در شکل زیر نقاط M و N روی ضلع AD طوری قرار دارند که طول MN ثابت است. اگر کمترین مقدار عبارت $BM + MN + NC$ برابر 16 باشد، طول MN کدام است؟
3-
با توجه به شکل مقابل $AB=۱۲$ با خط d موازی است. اگر نقطه M روی خط d باشد بطوریکه مساحت مثلث MAB برابر ۱۵ شود، حداقل مقدار محیط مثلث MAB کدام است؟
4- فرض کنید G محل برخورد میانههای مثلث ABC باشد و مثلثهای $A'B'C'$ و $A''B''C''$ به ترتیب مجانسهای مثلث ABC با مرکز تجانس G و نسبتهای تجانس $\frac{1}{2}$ و $ - \frac{1}{2}$ باشند، نسبت مساحت دو مثلث تبدیل یافته چقدر است؟
5-
نقطه $A$ به فاصله ۴ واحد از خط $d$ قرار دارد. تصویر نقطه $A$ تحت بازتاب نسبت به خط $d$ را $A'$ مینامیم. نقطه $A$ را حول $A'$ به زاویه ۱۲۰ درجه دوران میدهیم تا نقطه $A''$ حاصل شود. اندازه پاره خط $AA''$ کدام است؟