پایه تحصیلی
درس
وضعیت پاسخ

این 5 تا سوال رو از این مبحث جواب بده و خودت رو امتحان کن!

تابع f در $x = 2$ مشتق‌پذیر و $\mathop {\lim }\limits_{h \to 0} \frac{{f(2 - h) - 3}}{h} = 4$ است. مقدار مشتق تابع $y = {f^2}(\frac{4}{x})$ در نقطۀ $x = 2$ چقدر است؟

تابع $f(x) = [\frac{a}{{3x + 2}}]$ در اعداد حقیقی مثبت مشتق‌پذیر است. اگر a مثبت باشد، حدود a کدام است؟

اگر نقطه M(x,y) را روی نمودار $y=\sqrt{x^۴+x^۲+۱}$ در نظر بگیریم، آهنگ تغییر فاصله نقطه ی M از مبدا مختصات نسبت به تغییر x در نقطه $x=\sqrt۳$ کدام است؟ 

نمودار تابع $f(x)=\sqrt[۳]{x^{۲}}$ به صورت مقابل است. نمودار تابع مشتق به کدام صورت است؟

به موازات کدام خط می‌توانیم مماس بر نمودار تابع $y=۲\sin^۲x+۳$ رسم کنیم؟

1 از 5

ويژگي تابع هم صعودي و هم نزولي

کامل کنيد(شهريور1401) اگر تابعي در يک فاصله هم صعودي وهم نزولي باشد، تابع در آن فاصله ...... است
جواب این سوال رو می‌دونی؟

پاسخ‌ها

محبوب‌ترین
جدیدترین
بیشترین پاسخ
هم‌‌درس
پاسخ هوش مصنوعی

پاسخ:

اگر تابعي در يک فاصله هم صعودي و هم نزولي باشد، تابع در آن فاصله ثابت است.

زیرا اگر تابع در بازه‌ای هم صعودی و هم نزولی باشد، یعنی در قسمتی از دامنه‌اش افزایش و در قسمتی دیگر کاهش می‌یابد. تنها حالتی که این دو حالت را با هم دارد، ثابت بودن تابع است.

هم‌درس
icon

از این مبحث فلش‌کارت بساز!

هم‌درس رو نصب کن و از این مبحث فلش‌کارت بساز تا همیشه همراهت باشه.

صفحه 1 از 1

دیگر محتواهای حسابان 2 و پایه پایه دوازدهم

پر بازدیدترین مطالب مرتبط

فیلتر کردن