راهنمایی کوتاه: تقارن مرکزی یعنی شکل با چرخش ۱۸۰ درجه به دور یک نقطه، روی خودش منطبق شود.
گامبهگام:
- ۱) تقارن مرکزی یعنی یک نقطه به نام مرکز تقارن وجود دارد که اگر شکل را ۱۸۰ درجه بچرخانیم، دقیقاً روی خودش بیفتد.
- ۲) برای پیدا کردن شکلهای دارای تقارن مرکزی، باید ببینیم آیا نقطهای در شکل وجود دارد که همهی نقاط شکل نسبت به آن متقارن باشند.
- ۳) شکلهای سادهای که تقارن مرکزی دارند: دایره، مربع، مستطیل، لوزی، متوازیالاضلاع.
- ۴) دایره بینهایت تقارن مرکزی دارد (هر نقطهای روی مرکز دایره میتواند مرکز تقارن باشد).
- ۵) مربع و مستطیل فقط یک تقارن مرکزی دارند (نقطهی برخورد قطرها).
- ۶) مثلث متساویالاضلاع تقارن مرکزی ندارد، مگر اینکه مثلث خاصی باشد.
پاسخ نهایی: شکلهای زیادی تقارن مرکزی دارند. معروفترینها: دایره، مربع، مستطیل، لوزی، متوازیالاضلاع. دایره بیشترین تعداد تقارن مرکزی را دارد.
مثال مشابه: اگر یک ستارهی پنجپر را در نظر بگیری، آیا تقارن مرکزی دارد؟ خیر، چون اگر آن را ۱۸۰ درجه بچرخی، روی خودش نمیافتد.
اگر میخواهی بیشتر یاد بگیری: یک کاغذ بردار و شکلهای مختلف بکش. سپس سعی کن نقطهای پیدا کنی که اگر شکل را حول آن بچرخانی، روی خودش بیفتد. این نقطه همان مرکز تقارن است!