محاسبه حالات مختلف برای نمره صفر
در این مسئله، هر پاسخ درست نمره مثبت و هر ۳ پاسخ نادرست یک نمره منفی دارد. برای اینکه دانشآموز نمره صفر بگیرد، باید تعداد پاسخهای درست و نادرست به گونهای باشد که مجموع نمرات او صفر شود.
فرض کنیم تعداد پاسخهای درست $x$ و تعداد پاسخهای نادرست $y$ باشد. در این صورت، تعداد پاسخهای صحیح و نادرست باید به گونهای باشد که:
از آنجایی که $x$ و $y$ باید اعداد صحیح و غیرمنفی باشند و مجموع پاسخهای داده شده ($x + y$) نمیتواند از ۲۰ بیشتر باشد، میتوان حالات مختلف را بررسی کرد.
- اگر $x = 0$، آنگاه $y = 0$
- اگر $x = 3$، آنگاه $y = 9$ و $x + y = 12$
- اگر $x = 6$، آنگاه $y = 18$ و $x + y = 24$ که بیشتر از ۲۰ است و قابل قبول نیست.
پس حالات ممکن عبارتند از: $x = 0, y = 0$ و $x = 3, y = 9$ و سایر ترکیبات مشابه که در محدوده ۲۰ سؤال باشند.
تعداد کل حالات ممکن برای نمره صفر با استفاده از ترکیبیات محاسبه میشود.
یادآوری ایمنی: در حل مسائل ریاضی دقت کنید و مراحل را به دقت طی کنید.